Copper-Catalyzed Cascade Phosphorylation Initiated Radical Cyclization: Access to 2‑Phosphorylated Pyrrolo[1,2‑a]indole

Honglin Zhang,[†] Weipeng Li,[†] and Chengjian Zhu^{*,†,‡}

† State Key Laboratory of Coordination Chemistry, Jiangsu Key [Lab](#page-5-0)or[ato](#page-5-0)ry of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China

‡ State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China

S Supporting Information

ABSTRACT: A copper-catalyzed tandem radical cyclization of 1-(3-phenylprop-2-yn-1-yl)-1H-indole with diphenylphosphine oxides was developed. C−P bond formation was achieved coupled with C(sp²)−H functionalization. It provided an access to construct the pyrrolo[1,2-a]indole motif and a series of 2-phosphinoyl-9H-pyrrolo[1,2-a]indoles.

Polycyclic indole is one of important heterocycle classes, because of their biological and pharmacological activities. For example, pyrrolo $[1,2-a]$ indoles are important frameworks, which are present in numerous natural products an[d](#page-5-0) pharmaceutical chemicals, such as apo-Mitomycin B, Mitosene Lactam, and protein kinase C-â inhibitor JTT-010 (Scheme 1).² There have been several methods to construct the pyrrolo[1,2 a]indole scaffold.³ Very recently, an effective sil[ver-mediat](#page-1-0)e[d](#page-5-0) tandem phosphinoylation/cyclization process to construct 2 phosphinoyl-9H-[py](#page-5-0)rrolo[1,2-a] indoles was developed by the Zhao and Tang group. $3c$ An expensive transition-metal catalyst and high temperature are usually needed in these strategies. However, this motif [rem](#page-5-0)ains interesting to organic synthetic chemists.

Phosphonates are widely found in organic chemicals such as function[al](#page-5-0) materials, 4 natural products, 5 and pharmaceutical chemicals.⁶ Because of their special bioactivities,⁶ it is of great importance to devel[op](#page-5-0) methods for the [co](#page-5-0)nstruction of the C− P bond. [E](#page-5-0)normous efforts have been devoted [t](#page-5-0)o phosphorylation reactions catalyzed by transition metals σ or under metalfree conditions.⁸ A variety of tandem reactions initiated by the addition of P-centered radicals to active alken[es](#page-5-0) were reported, providing a u[se](#page-5-0)ful strategy to construct organophosphorus frameworks especially heterocycles.⁹ Our group reported a silver-catalyzed cascade radical 6-endo-trig cyclization initiated by phosphorylation of N -methyl-N-phenylcinnamamides.¹⁰ However, only several cascade reactions of P-centered radicals with alkynes through C−H functionalization were reported [to](#page-5-0) date. 11 Thus, it remains a challenge to explore efficient Pcentered radical cascade reactions, which would provide an alter[na](#page-5-0)tive strategy for synthesis of organophosphorus compounds. As our continuous research, herein, we report a

copper-catalyzed cascade phosphorylation initiated radical cyclization, providing an access to 2-phosphorylated-pyrrolo- $[1,2-a]$ indole.

The initial studies were carried out by selecting 3-methyl-1- (3-phenylprop-2-yn-1-yl)-1H-indole (1a) as a model substrate to react with diphenylphosphine oxide in the presence of 20 mol % Cu(OAc)₂ and 2 equiv of $K_2S_2O_8$ in 2 mL of MeCN at 60 °C for 12 h under an Ar atmosphere. To our delight, (9 methyl-1-phenyl-9H-pyrrolo[1,2-a]indol-2-yl)-diphenylphosphine oxide (3a) was obtained in 42% yield (Table 1, entry 1). Different metal catalysts were screened, and anhydrous $CuSO₄$ exhibited the best catalytic activi[ty with a](#page-1-0) 52% yield of 3a (Table 1, entries 1−5). Oxidants were tested, and no better result was obtained (Table 1, entries 6−9), indicating that $K_2S_2O_8$ is the most suitable oxidant. As 25 mol % anhydrous CuSO4 was loaded, 3a wa[s generat](#page-1-0)ed in 76% yield (Table 1, entry 10). However, increasing the amount of $CuSO₄$ did not result in an increase in yield (Table 1, entry 11). [Similarly](#page-1-0), the yield decreased to 62% when 3 equiv $K_2S_2O_8$ were loaded (Table 1, entry 12). Whe[n the rea](#page-1-0)ctions were carried out under higher or lower temperature, the yield decreased (Ta[ble 1, en](#page-1-0)tries 13, 14), showing that 60 \degree C is the most suitable reaction temperature. Without $CuSO₄$, 3a was obtained o[nly in 15](#page-1-0)% yield (Table 1, entry 15). A trace of 3a was obtained when no $K_2S_2O_8$ was loaded (Table 1, entry 16). This result showed that $CuSO₄$ [is of](#page-1-0) great importance for this transformation.

As the optimized reaction conditions wer[e](#page-1-0) [estiblis](#page-1-0)hed, it was applied to a series of 1-(3-phenylprop-2-yn-1-yl)-1H-indoles.

Received: November 4, 2016 Published: January 20, 2017

Table 1. Optimization of Reaction Condition^a

a Reaction condition: 1a (0.1 mmol), diphenylphosphine oxide (0.2 mmol), MeCN (2 mL), under an Ar atmosphere, 12 h unless otherwise noted. $\stackrel{b}{b}$ Isolated yield. $\stackrel{c}{c}$ DMF(2 mL) was used.

The results showed that both electron- and electron-donating functional groups were well tolerated (Figure 1). The corresponding products could be also obtained in moderate yield when indoles were substituted by chlori[ne atoms](#page-2-0) (Figure 1, 3d). It provided the possibility for further transformation of these products. When substituent groups (such as Me, [OMe,](#page-2-0) [O](#page-2-0)CF3, F, Ac, tBu) were on the phenyl ring attached to a carbon−carbon triple bond, the reaction efficiency was nearly unaffected, generating the desired products in moderate to good yield (Figure 1, 3f−3n). Diphenylphosphine oxides substituted by Me, OMe, or Br were also scoped, and the corresponding [product](#page-2-0)s were obtained in moderate yields (Figure 1, 3o−3x). When the phenyl ring attached to the carbon−carbon triple bond was replaced by a thiophene ring, [product](#page-2-0) 3u was generated in 38% yield (Figure 1, 3u). However, it did not work when a methyl group was used (Figure 1, 3v). Diethyl phosphite and dibenzy[l phosphit](#page-2-0)e also could not react with 1-(3-phenylprop-2-yn-1-yl)-1H-indole [\(Figure 1](#page-2-0), 3w−3x). Furthermore, a gram-scale reaction of 1b and diphenylphosphine oxide was performed, generating [product](#page-2-0) 3b in 65% yield (Figure 2).

For further investagation of the mechanism, some control experiments were carried [out. When](#page-2-0) 1 equiv of radical inhibitor 2,2,6,6-tetramethylpiperidine oxide (TEMPO) was loaded, the reaction ceased and no 3a was detected (Scheme 2). The

 $TEMPO-P(O)Ph$ ₂ adduct was observed by LC-MS (mass calcd for $C_{21}H_{29}NO_2P$ [M + H]⁺: 358.18, found 358.92) and ³¹P $NMR^2 (\tilde{\delta}^2 33.5).^{12}$ Meanwhile, an EPR experiment was conducted to detected the P-centered radical by addition of 2-methyl-2-nitros[opr](#page-5-0)opane (MNP), a radical spin trapping agent. When MNP was added to the reaction system, an EPR signal was recorded (Scheme $3(b)$). It showed that a Pcentered radical generated and trapped by MNP, forming a relatively stable radical A (a_N = 10.56 G, a_P = 12.02 G).¹³ The result suggested that th[is](#page-3-0) [reaction](#page-3-0) undergoes a radical pathway.

On the basis of above results and previous lit[era](#page-5-0)ture reports, 14 we suggested a plausible mechanism (Scheme 4). First, a P-centered radical formed when diphenylphosphine oxide [wa](#page-5-0)s oxidized by $Cu(II)$ and $Cu(I)$ was [released.](#page-3-0)^{14a} Oxidized by $K_2S_2O_8$, Cu(I) transformed to Cu(II). Then, a vinyl radical I was generated after the addition of the [P](#page-5-0)centered radical to the C−C triple bond.14b Radical intermediate II was afforded, as vinyl radical I underwent a intramolecular cyclization.^{14c} Oxidized by $K_2S_2O_8$ or Cu(II), radical II transformed to be cation III. 14a Finally, deprotonation of the cation III gen[erat](#page-5-0)ed intermediate $\overrightarrow{IV}^{14c}$ which transformed to the final product 3b [thr](#page-5-0)ough an isomerization process.

In conclusion, we have reported a copper catalyzed tandom C−H functionalization/radical cyclization initiated by phosphorylation. In this reaction, both P−H and C−H bonds were activated. A direct access to 2-phosphorylated-pyrrolo[1,2 a]indoles was provided. A series of functional groups were well tolerated, giving the corresponding products in moderate to good yields. Meanwhile, a method to synthesize polycyclic indoles was developed, which may be applied in organic synthetic chemistry.

EXPERIMENTAL SECTION

General Information. All reagents were purchased from chemical supliers and used without further purification.

1-(3-Phenylprop-2-yn-1-yl)-1H-indoles were prepared according to literature reports. ${}^{\text{1c,15}}$ The radical cyclization was performed under an Ar atmosphere. The reaction was detected by TLC. The products were separated by TL[C. HR](#page-5-0)MS data were carried out by a TOF LC-MS. 1 H, 19 F, 31 P, and 13 C NMR spectra were recorded using a 400 MHz spectrometer using $CDCl₃$ as solvent.

Experimental Procedure for the Copper-Catalyzed Cyclization of 1-(3-Phenylprop-2-yn-1-yl)-1H-indole with Diphenylphosphine Oxide. 1-(3-Phenylprop-2-yn-1-yl)-1H-indole (0.1 mmol), diphenylphosphine oxide (0.2 mmol, 2.0 equiv), CuSO₄ (0.025 mmol, 25 mol %), $K_2S_2O_8$ (0.2 mmol, 2.0 equiv), MeCN (2.0 mL), and a stir bar were added to a sealed tube under an Ar atmosphere. Then the tube was heated to 60 °C for 12 h. The tube was cooled to room temperature, and the mixture was concentraed in vacuum. The corresponding product 3 was separated by TLC using ethyl acetate and petroleum (1:1−2:1) as solvents.

(9-Methyl-1-phenyl-9H-pyrrolo[1,2-a]indol-2-yl)diphenylphosphine Oxide (3a). Mp: 194.1−196.4 °C, light yellow solid (33.6 mg, 76%). ¹H NMR (400 MHz, CDCl₃) δ 7.83−7.76 (m, 2H), 7.70−

Figure 1. Copper-catalyzed tandom cyclization of 1-(3-phenylprop-2-yn-1-yl)-1H-indoles with diphenylphosphine oxide. Standard condition: 1-(3 phenylprop-2-yn-1-yl)-1H-indole (0.1 mmol), diphenylphosphine oxide (0.2 mmol), anhydrous CuSO₄ (25 mol %), K₂S₂O₈ (2.0 equiv), MeCN (2.0 mL), 60 °C, 12 h under an Ar atmosphere. The isolated yield is provided.

Figure 2. Gram-scale reaction.

Scheme 2. Radical Trapping Experiment

Scheme 3. EPR Experiment^{a}

 $-1a$ + diphenylphosphine oxide + CuSO, + K,S,O, + MNP

a The electron paramagnetic resonance (EPR) spectra (X band, 0.5 GHz, room temperature) of the reaction mixture of 1a, diphenylphosphine oxide, CuSO₄, and $K_2S_2O_8$ in MeCN at 60 °C

7.63 (m, 2H), 7.53 (d, J = 7.2 Hz, 2H), 7.50−7.47 (m, 1H), 7.45−7.40 $(m, 2H)$, 7.37 (d, J = 7.4 Hz, 1H), 7.34–7.15 $(m, 7H)$, 7.11 (t, J = 7.5) Hz, 2H), 7.03 (t, J = 7.3 Hz, 1H), 6.94 (d, J = 3.9 Hz, 1H), 4.34 (q, J = 7.1 Hz, 1H), 1.31 (d, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 140.7, 140.5, 140.4, 138.8, 134.0 (d, J = 107.0 Hz), 133.8, 133.5, 132.8, 131.9, 131.8, 131.7, 131.3, 131.3, 131.2, 131.1, 129.3, 128.2, 128.1, 128.0, 127.8, 127.7, 126.3, 125.0, 124.8, 122.2, 122.1, 118.8, 118.6, 118.3, 117.1, 110.4, 36.2, 17.1. ³¹P NMR (162 MHz, CDCl₃) δ 21.10. HRMS (ESI) calcd for $C_{30}H_{24}NNaOP^+ (M + Na^+)$: 468.1488, found: 468.1484.

Diphenyl(1-phenyl-9H-pyrrolo[1,2-a]indol-2-yl)phosphine Oxide (3b). Mp: 259.5−262.0 °C, light yellow solid (30.9 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ 7.79–7.71 (m, 4H), 7.64–7.57 (m, 2H), 7.42 (m, 3H), 7.38−7.28 (m, 6H), 7.23 (d, J = 7.5 Hz, 1H), 7.19−7.13 $(m, 3H)$, 7.04 $(t, J = 7.4 \text{ Hz}, 1H)$, 6.96 $(d, J = 4.0 \text{ Hz}, 1H)$, 4.02 $(s,$ 2H). ¹³C NMR (100 MHz, CDCl₃) δ 139.7, 135.4, 135.3, 134.5, 134.2, 133.8 (d, J = 107.3 Hz), 131.9, 131.8, 131.3, 131.3, 128.7, 128.3, 128.2, 128.0, 127.7, 126.2, 126.1, 124.7, 121.9, 121.9, 119.5, 119.3, 117.9, 116.8, 110.6, 29.6. ³¹P NMR (162 MHz, CDCl₃) δ 21.33. HRMS (ESI) calcd for $C_{29}H_{22}NNaOP^+$ (M + Na⁺): 454.1331, found:454.1326.

Scheme 4. Plausible Reaction Mechanism

(8-Methyl-1-phenyl-9H-pyrrolo[1,2-a]indol-2-yl)diphenylphosphine Oxide (3c). Mp: 236.4−238.6 °C, light yellow solid (28.3 mg, 64%). ¹H NMR (400 MHz, CDCl₃) δ 7.79−7.71 (m, 4H), 7.63− 7.60 (m, 2H), 7.45−7.40 (m, 2H), 7.37−7.32 (m, 4H), 7.22 (t, J = 7.7 Hz, 1H), 7.16 (t, J = 7.6 Hz, 2H), 7.10–7.04 (m, 2H), 7.01 (t, J = 7.2 Hz, 1H), 6.94 (d, J = 4.0 Hz, 1H), 3.92 (s, 2H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 139.4, 135.9, 135.3, 134.9 (d, J = 109.5 Hz), 133.3, 131.9, 131.8, 131.3, 131.3, 128.7, 128.1, 128.0, 127.8, 126.1, 125.8, 119.6, 119.3, 108.0, 28.6, 18.5. 31P NMR (162 MHz, CDCl₃) δ 21.47. HRMS (ESI) calcd for C₃₀H₂₄NNaOP⁺ (M + Na⁺): 468.1488, found: 468.1493.

(6-Chloro-1-phenyl-9H-pyrrolo[1,2-a]indol-2-yl)diphenylphosphine Oxide (3d). Mp: 281.5−283.2 °C, light yellow solid (25.5 mg, 48%). ¹H NMR (400 MHz, CDCl₃) δ 7.77−7.71 (m, 4H), 7.60 $(d, J = 7.4 \text{ Hz}, 2H), 7.44-7.41 \text{ (m, 2H)}, 7.38-7.33 \text{ (m, 5H)}, 7.23 \text{ (d, J)}$ = 1.7 Hz, 1H), 7.18−7.13 (m, 3H), 7.07−7.03 (m, 1H), 6.89 (d, J = 3.9 Hz, 1H), 3.99 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 140.6, 133.8, 133.6, 133.5 (d, J = 107.2 Hz), 131.9, 131.8, 131.4, 128.7, 128.2, 128.1, 127.0, 126.3, 124.6, 119.5, 119.3, 111.3, 29.2. 31P NMR (162 MHz, CDCl₃) δ 21.10. HRMS (ESI) calcd for C₂₉H₂₁NClNaOP⁺ (M + Na⁺): 488.0941, found: 488.0943.

(1-(4-Methoxyphenyl)-9H-pyrrolo[1,2-a]indol-2-yl)diphenyl*phosphine Oxide (3e).* Mp: 133.9–135.1 °C, light yellow solid (19.2 mg, 42%). ¹H NMR (400 MHz, CDCl₃) δ 7.76−7.71 (m, 4H), 7.51 $(d, J = 8.7 \text{ Hz}, 2\text{H}), 7.43 (dd, J = 7.8, 1.9 \text{ Hz}, 3\text{H}), 7.38–7.34 (m, 4\text{H}),$ 7.29 (d, $J = 7.2$ Hz, 1H), 7.23 (d, $J = 7.7$ Hz, 1H), 7.17 (dd, $J = 7.9$, 7.0 Hz, 1H), 6.93 (d, $J = 3.9$ Hz, 1H), 6.70 (d, $J = 8.7$ Hz, 2H), 3.99 (s, 2H), 3.72 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.9, 139.8, 134.9, 134.6, 133.8 (d, J = 107.2 Hz), 131.9, 131.8, 131.3, 129.9, 128.2, 128.0, 127.7, 126.8, 126.2, 124.6, 119.2, 119.0, 113.5, 110.5, 55.2, 29.5. $31P$ NMR (162 MHz, CDCl₃) δ 21.47. HRMS (ESI) calcd for $C_{30}H_{24}NNaO_2P^+ (M + Na^+): 484.1437$, found: 484.1439.

(7-Methoxy-1-(p-tolyl)-9H-pyrrolo[1,2-a]indol-2-yl)diphenylphosphine Oxide (3f). Mp: 153.4−155.6 °C, light yellow solid (24.5 mg, 52%). ¹H NMR (400 MHz, CDCl₃) δ 7.77−7.71 (m, 4H), 7.48− 7.41 (m, 4H), 7.37−7.32 (m, 4H), 7.13 (d, J = 8.5 Hz, 1H), 7.00 (d, J $= 1.9$ Hz, 1H), 6.95 (d, $J = 7.9$ Hz, 2H), 6.87 (d, $J = 3.8$ Hz, 1H), 6.83−6.79 (m, 1H), 3.98 (s, 2H), 3.82 (s, 3H), 2.22 (s, 3H). 13C NMR $(100 \text{ MHz}, \text{CDCl}_3)$ δ 157.3, 136.2, 135.6, 135.1, 135.0, 133.9 (d, J = 107.1 Hz), 133.7, 132.0, 131.9, 131.2, 131.2, 128.7, 128.6, 128.1, 128.0, 122.0, 119.2, 119.0, 112.6, 112.5, 110.9, 55.8, 29.8, 21.1. 31P NMR (162 MHz, CDCl₃) δ 21.83. HRMS (ESI) calcd for C₃₁H₂₇NO₂P⁺ (M + H⁺): 476.1774, found: 476.1777.

(1-(4-(tert-Butyl)phenyl)-7-methoxy-9H-pyrrolo[1,2-a]indol-2-yl) diphenylphosphine Oxide (3g). Mp: 116.3−118.7 °C, light yellow solid (29.2 mg, 57%). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (dd, J = 12.1, 7.1 Hz, 4H), 7.45−7.37 (m, 4H), 7.35−7.30 (m, 4H), 7.15−7.10 $(m, 3H)$, 7.00 $(d, J = 1.9$ Hz, 1H), 6.92 $(d, J = 3.7$ Hz, 1H), 6.83–6.79 (m, 1H), 3.98 (s, 2H), 3.82 (s, 3H), 1.22 (s, 9H). 13C NMR (100

The Journal of Organic Chemistry Note

MHz, CDCl₃) δ 157.3, 148.8, 136.2, 134.9, 134.8, 133.8 (d, J = 107.3 Hz), 133.7, 132.0, 131.9, 131.2, 131.2, 128.4, 128.1, 128.0, 124.8, 121.9, 121.9, 119.1, 118.9, 116.9, 115.7, 112.6, 112.5, 110.9, 55.8, 34.3, 31.2, 29.7. ³¹P NMR (162 MHz, CDCl₃) δ 21.49. HRMS (ESI) calcd for $C_{34}H_{32}NNaO_2P^+ (M + Na^+)$: 540.2063, found: 540.2057.

Diphenyl(1-(o-tolyl)-9H-pyrrolo[1,2-a]indol-2-yl)phosphine Oxide (3h). Mp: 216.3–217.9 °C, light yellow solid (21.7 mg, 49%). ¹H NMR (400 MHz, CDCl₃) δ 7.63 (s, 4H), 7.40 (d, J = 7.1 Hz, 4H), 7.35−7.27 (m, 6H), 7.19−7.15 (m, 1H), 7.12 (d, J = 7.4 Hz, 1H), 7.02 $(t, J = 7.4 \text{ Hz}, 1H)$, 6.95–6.88 (m, 2H), 3.67 (s, 2H), 1.95 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 140.01, 137.16, 135.42, 134.79, 133.02, 131.78, 131.67, 131.16, 129.33, 127.97, 127.85, 127.78, 127.24, 126.23, 124.95, 124.50, 120.38, 118.33, 110.64, 28.93, 19.84. 31P NMR (162 MHz, CDCl₃) δ 21.64. HRMS (ESI) calcd for C₃₀H₂₅NOP⁺ (M + H+): 446.1668, found: 446.1662.

Diphenyl(1-(3-(trifluoromethoxy)phenyl)-9H-pyrrolo[1,2-a]indol-2-yl)phosphine Oxide (3i). Mp: 195.3-196.7 °C, light yellow solid (28.6 mg, 56%). ¹H NMR (400 MHz, CDCl₃) δ 7.79–7.72 (m, 4H), 7.64 (d, J = 7.8 Hz, 1H), 7.47−7.42 (m, 4H), 7.39−7.34 (m, 4H), 7.31 $(d, J = 7.6 \text{ Hz}, 1H), 7.25-7.13 \text{ (m, 3H)}, 6.95 \text{ (d, } J = 4.0 \text{ Hz}, 1H), 6.89$ (d, J = 8.2 Hz, 1H), 4.02 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 148.9, 139.5, 136.3, 136.0, 135.9, 134.3, 133.3 (d, J = 107.5 Hz), 131.9, 131.8, 131.5, 131.5, 129.4, 128.2, 128.1, 127.8, 127.5, 126.3, 124.9, 121.7, 120.8, 120.5, 120.4, 119.6, 119.4, 118.5, 118.2, 117.1, 110.7, 29.5. ¹⁹F NMR (376 MHz, CDCl₃) δ –57.63. ³¹P NMR (162 MHz, CDCl₃) δ 20.93. HRMS (ESI) calcd for C₃₀H₂₁F₃NNaO₂P⁺ (M + Na+): 538.1154, found: 538.1150.

Diphenyl(1-(m-tolyl)-9H-pyrrolo[1,2-a]indol-2-yl)phosphine Oxide (3j). Mp: 278.2–280.5 °C, light yellow solid (23.8 mg, 54%). ¹H NMR (400 MHz, CDCl₃) δ 7.79–7.73 (m, 4H), 7.45–7.41 (m, 3H), 7.38−7.33 (m, 6H), 7.30 (d, J = 7.4 Hz, 1H), 7.24 (d, J = 7.6 Hz, 1H), 7.19−7.15 (m, 1H), 7.04 (t, J = 7.6 Hz, 1H), 7.00 (d, J = 4.0 Hz, 1H), 6.85 (d, J = 7.5 Hz, 1H), 4.01 (s, 2H), 2.18 (s, 3H). 13C NMR (100 MHz, CDCl₃) δ 139.7, 137.4, 135.2, 134.6, 134.0, 133.9 (d, J = 107.1 Hz), 131.9, 131.8, 131.6, 131.2, 129.8, 128.4, 128.1, 128.0, 127.9, 127.7, 126.9, 126.7, 126.2, 125.5, 124.6, 119.4, 119.2, 110.6, 29.6, 21.3. $31P$ NMR (162 MHz, CDCl₃) δ 21.04. HRMS (ESI) calcd for $C_{30}H_{25}NOP$ ⁺ (M + H⁺) 446.1668, found: 446.1673.

(1-(4-(tert-Butyl)phenyl)-9H-pyrrolo[1,2-a]indol-2-yl)diphenylphosphine Oxide (3k). Mp: 138.4−143.7 °C, light yellow solid (32.9 mg, 68%). ¹H NMR (400 MHz, CDCl₃) δ 7.77−7.71 (m, 4H), 7.46− 7.39 (m, 5H), 7.35−7.30 (m, 5H), 7.23 (d, J = 7.6 Hz, 1H), 7.18 (d, J $= 7.4$ Hz, 1H), 7.13 (d, J = 8.4 Hz, 2H), 6.99 (d, J = 3.9 Hz, 1H), 4.02 (s, 2H), 1.22 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 148.8, 139.8, 135.0, 134.9, 134.6, 133.9 (d, J = 107.2 Hz), 131.9, 131.8, 131.2, 128.4, 128.1, 128.0, 127.7, 126.2, 124.8, 124.6, 121.9, 121.8, 119.2, 119.0, 118.0, 116.8, 110.5, 34.3, 31.2, 29.5. ³¹P NMR (162 MHz, CDCl₃) δ 21.34. HRMS (ESI) calcd for $C_{33}H_{30}NNaOP^+$ $(M + Na^+)$ 510.1957, found: 510.1954.

Diphenyl(1-(p-tolyl)-9H-pyrrolo[1,2-a]indol-2-yl)phosphine Oxide (31). Mp: 260.1–264.3 °C, light yellow solid (25.1 mg, 57%). ¹H NMR (400 MHz, CDCl₃) δ 7.79–7.70 (m, 4H), 7.48 (d, J = 8.1 Hz, 2H), 7.46−7.40 (m, 3H), 7.38−7.32 (m, 4H), 7.29 (d, J = 7.5 Hz, 1H), 7.22 (d, J = 7.6 Hz, 1H), 7.19−7.15 (m, 1H), 6.99−6.91 (m, 3H), 4.01 (s, 2H), 2.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 139.8, 135.7, 135.2, 135.1, 134.6, 133.9 (d, J = 107.1 Hz), 131.9, 131.8, 131.2, 131.2, 128.7, 128.6, 128.1, 128.0, 127.7, 126.2, 124.6, 121.9, 119.3, 119.1, 110.5, 29.6, 21.1. ³¹P NMR (162 MHz, CDCl₃) δ 21.58. HRMS (ESI) calcd for $C_{30}H_{25}NOP$ ⁺ (M + H⁺) 446.1668, found: 446.1665.

1-(4-(2-(Diphenylphosphoryl)-9H-pyrrolo[1,2-a]indol-1-yl) phenyl)ethan-1-one (3m). Mp: 263.8−267.6 °C, light yellow solid $(21.1 \text{ mg}, 45\%)$. ¹H NMR (400 MHz, CDCl₃) δ 7.79–7.72 (m, 8H), 7.48−7.43 (m, 3H), 7.39−7.34 (m, 4H), 7.31 (d, J = 7.3 Hz, 1H), 7.25−7.18 (m, 2H), 6.91 (d, J = 4.1 Hz, 1H), 4.06 (s, 2H), 2.51 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.9, 139.4, 139.3, 136.6, 136.5, 134.5, 134.2, 133.3 (d, J = 107.7 Hz), 132.6, 131.9, 131.8, 131.6, 131.6, 131.3, 130.8, 130.7, 129.0, 128.9, 128.5, 128.3, 128.2, 127.9, 126.3, 125.0, 120.9, 120.9, 120.2, 119.9, 118.0, 116.8, 110.7, 30.0, 26.6. 31P NMR (162 MHz, CDCl₃) δ 21.61. HRMS (ESI) calcd for $C_{31}H_{25}NO_2P^+ (M + H^+)$ 474.1617, found: 474.1622.

(1-(4-Fluorophenyl)-9H-pyrrolo[1,2-a]indol-2-yl)diphenylphosphine Oxide (3n). Mp: 265.5−267.9 °C, light yellow solid (22.7 mg, 51%). ¹H NMR (400 MHz, CDCl₃) δ 7.79−7.69 (m, 4H), 7.62− 7.55 (m, 2H), 7.48−7.41 (m, 3H), 7.38−7.33 (m, 4H), 7.30 (d, J = 7.1 Hz, 1H), 7.23 (d, J = 7.6 Hz, 1H), 7.20–7.16 (m, 1H), 6.93 (d, J = 4.0 Hz, 1H), 6.84 (t, $J = 8.8$ Hz, 2H), 3.99 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 161.3 (d, J = 243.7 Hz), 139.7, 135.3, 135.2, 134.4, 133.6 (d, J = 107.2 Hz), 131.9, 131.8, 131.4, 131.4, 130.4, 130.3, 128.2, 128.1, 127.8, 126.2, 124.7, 121.0, 120.9, 119.3, 119.1, 118.1, 116.9, 115.0, 114.7, 110.6, 29.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -116.40. ³¹P NMR (162 MHz, CDCl₃) δ 21.15. HRMS (ESI) calcd for C₂₉H₂₂FNOP⁺ (M + H⁺) 450.1418, found: 450.1416.

(1-(4-(tert-Butyl)phenyl)-9H-pyrrolo[1,2-a]indol-2-yl)di-p-tolylphosphine Oxide (3o). Mp: 105.5−106.8 °C, light yellow solid (24.0 mg, 47%). ¹H NMR (400 MHz, CDCl₃) δ 7.64–7.58 (m, 4H), 7.46 $(d, J = 8.3 \text{ Hz}, 2\text{H}), 7.42 (d, J = 7.5 \text{ Hz}, 1\text{H}), 7.31–7.27 (m, 1\text{H}), 7.22$ $(d, J = 7.6 \text{ Hz}, 1H), 7.17-7.10 \text{ (m, 7H)}, 6.97 \text{ (d, } J = 4.0 \text{ Hz}, 1H), 4.01$ (s, 2H), 2.32 (s, 6H), 1.23 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 148.7, 141.3, 141.3, 139.8, 134.9, 134.8, 134.6, 131.9, 131.8, 131.5, 131.4, 130.9 (d, J = 109.6 Hz), 128.8, 128.7, 128.4, 127.7, 126.2, 124.7, 124.5, 121.8, 121.7, 119.2, 119.0, 118.6, 117.4, 110.5, 34.3, 31.3, 29.5, 21.5. $31P$ NMR (162 MHz, CDCl₃) δ 21.49. HRMS (ESI) calcd for $C_{35}H_{35}NOP$ ⁺ (M + H⁺) 516.2451, found: 516.2454.

Di-p-tolyl(1-(p-tolyl)-9H-pyrrolo[1,2-a]indol-2-yl)phosphine Oxide (3p). Mp: 94.3–96.0 °C, light yellow solid (23.0 mg, 49%). ¹H NMR (400 MHz, CDCl₃) δ 7.64–7.57 (m, 4H), 7.50 (d, J = 8.1 Hz, 2H), 7.43 (d, J = 7.4 Hz, 1H), 7.29 (t, J = 7.7 Hz, 1H), 7.22 (d, J = 7.6 Hz, 1H), 7.18–7.13 (m, 5H), 6.97 (d, J = 8.0 Hz, 2H), 6.92 (d, J = 4.0 Hz, 1H), 4.00 (s, 2H), 2.35 (s, 6H), 2.24 (s, 3H). 13C NMR (100 MHz, CDCl₃) δ 141.5, 139.8, 135.5, 135.2, 135.1, 134.6, 131.9, 131.8, 131.5, 130.9 (d, J = 109.7 Hz), 128.9, 128.8, 128.7, 128.6, 127.6, 126.2, 124.5, 119.3, 119.1, 110.5, 29.6, 21.6, 21.1. 31P NMR (162 MHz, CDCl₃) δ 21.68. HRMS (ESI) calcd for C₃₂H₂₈NNaOP⁺ (M + Na⁺) 496.1801, found: 496.1805.

Diphenyl(1-(m-tolyl)-9H-pyrrolo[1,2-a]indol-2-yl)phosphine Oxide (3q). Mp: 71.6–72.8 °C, light yellow solid (22.7 mg, 42%). ¹H NMR (400 MHz, CDCl₃) δ 7.64–7.57 (m, 4H), 7.42 (d, J = 8.3 Hz, 2H), 7.13 (t, $J = 8.7$ Hz, 7H), 7.00 (s, 1H), 6.93 (d, $J = 3.5$ Hz, 1H), 6.81 (d, J = 6.9 Hz, 1H), 3.98 (s, 2H), 3.82 (s, 3H), 2.32 (s, 6H), 1.22 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 157.2, 148.7, 141.3, 136.2, 133.8, 131.9, 131.8, 131.4, 130.9 (d, J = 109.4 Hz), 128.8, 128.7, 128.4, 124.7, 119.0, 118.7, 112.6, 112.5, 110.8, 55.8, 31.2, 29.8, 21.5. 31P NMR (162 MHz, CDCl₃) δ 21.39. HRMS (ESI) calcd for $C_{36}H_{37}NO_2P^+ (M + H^+)$ 546.2556, found: 546.2550.

(7-Methoxy-1-(p-tolyl)-9H-pyrrolo[1,2-a]indol-2-yl)di-p-tolylphosphine Oxide (3r). Mp: 83.1−84.5 °C, light yellow solid (22.0 mg, 44%). ¹H NMR (400 MHz, CDCl₃) δ 7.63–7.56 (m, 4H), 7.49 (d, J = 8.1 Hz, 2H), 7.17−7.10 (m, 5H), 7.01−7.94 (m, 3H), 6.86 (d, J = 4.0 Hz, 1H), 6.83−6.78 (m, 1H), 3.98 (s, 2H), 3.82 (s, 3H), 2.34 (s, 6H), 2.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.2, 141.4, 136.2, 135.4, 134.9, 133.8, 131.9, 131.8, 131.6, 131.0 (d, J = 109.7 Hz), 128.8, 128.7, 128.7, 128.5, 121.8, 119.1, 118.9, 112.6, 112.5, 110.8, 55.8, 29.9, 21.6, 21.1. ³¹P NMR (162 MHz, CDCl₃) δ 22.02. HRMS (ESI) calcd for $C_{33}H_{31}NO_2P^+ (M + H^+)$ 504.2087, found: 504.2083.

Bis(4-bromophenyl)(1-phenyl-9H-pyrrolo[1,2-a]indol-2-yl) phosphine Oxide (3s). Mp: 238.2−239.7 °C, light yellow solid (25.3 mg, 43%). ¹H NMR (400 MHz, CDCl₃) δ 7.60−7.55 (m, 6H), 7.50− 7.44 (m, 5H), 7.33−7.27 (m, 2H), 7.18 (t, J = 7.5 Hz, 3H), 7.09 (t, J = 7.4 Hz, 1H), 6.97 (d, J = 4.0 Hz, 1H), 4.02 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 139.5, 135.7, 135.5, 134.5, 133.9, 133.4, 133.3, 132.5 (d, J = 109.0 Hz), 131.5, 131.4, 128.7, 128.2, 127.8, 127.4, 126.7, 126.6, 126.5, 126.3, 124.9, 122.0, 121.9, 119.3, 119.1, 116.9, 115.7, 110.7, 29.5. ³¹P NMR (162 MHz, CDCl₃) δ 19.88. C₂₉H₂₁Br₂NOP⁺ (M + H+) 587.9722, f ound: 587.9721.

Bis(4-methoxyphenyl)(1-phenyl-9H-pyrrolo[1,2-a]indol-2-yl) phosphine Oxide (3t). Mp: 183.4−185.2 °C, light yellow solid (22.3 mg, 46%). ¹H NMR (400 MHz, CDCl₃) *δ* 7.67 (s, 1H), 7.65−7.61 (m, 5H), 7.42 (d, J = 7.4 Hz, 1H), 7.30 (t, J = 7.6 Hz, 1H), 7.23 (d, J = 7.6 Hz, 1H), 7.19–7.14 (m, 3H), 7.05 (t, J = 7.4 Hz, 1H), 6.94 (d, J = 4.1 Hz, 1H), 6.85 (dd, J = 8.8, 2.2 Hz, 4H), 4.01 (s, 2H), 3.79 (s, 6H). ¹³C

NMR (100 MHz, CDCl₃) δ 161.9, 161.9, 139.8, 135.4, 135.3, 134.5, 134.4, 133.7, 133.5, 131.8, 129.5, 128.7, 128.6, 128.0, 127.8(d, J = 104.0 Hz), 127.7, 126.2, 126.0, 125.9, 125.0, 124.5, 121.8, 121.7, 119.4, 119.1, 118.9, 117.7, 113.7, 113.6, 110.5, 55.3, 29.7. 31P NMR (162 MHz, CDCl₃) δ 21.11. $C_{31}H_{26}NNaO_3P^+ (M + Na^+)$ 514.1543, found: 514.1546.

Bis(4-methoxyphenyl)(1-(thiophen-2-yl)-9H-pyrrolo[1,2-a]indol-2-yl)phosphine Oxide (3u). Mp: 213.7−214.9 °C, light yellow solid (18.6 mg, 38%). ¹H NMR (400 MHz, CDCl₃) δ 7.67–7.61 (m, 6H), 7.43 (d, J = 7.4 Hz, 1H), 7.30 (s, 1H), 7.23 (d, J = 7.6 Hz, 1H), 7.17 (t, $J = 3.6$ Hz, 2H), 7.06 (t, J = 7.4 Hz, 1H), 6.94 (d, J = 4.1 Hz, 1H), 6.85 (dd, J = 8.8, 2.1 Hz, 4H), 4.02 (s, 2H), 3.80 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 161.88, 161.85, 139.77, 135.40, 135.30, 134.48, 134.37, 133.64, 133.53, 131.81, 129.48, 128.71, 128.59, 128.27, 128.00, 127.86, 127.68, 127.23, 126.4 (d, J = 106.3 Hz), 126.15, 126.03, 125.01, 124.91, 124.53, 121.78, 121.70, 119.34, 119.13, 118.86, 117.68, 113.67, 113.54, 110.48, 77.37, 77.05, 76.74, 55.25, 29.64. 31P NMR (162 MHz, CDCl₃) δ 21.83. C₂₉H₂₅NO₃PS⁺ (M + H⁺) 498.1287, found: 498.1289.

■ ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.6b02673.

 1 H, 31 P, 19 F, and 13 C NMR spectra of compounds 3a–3u [\(PDF\)](http://pubs.acs.org)

■ A[UTHO](http://pubs.acs.org/doi/suppl/10.1021/acs.joc.6b02673/suppl_file/jo6b02673_si_001.pdf)R INFORMATION

Corresponding Author

*E-mail: cjzhu@nju.edu.cn.

ORCID[®]

Chengjian Zhu: [0000-0003-](mailto:cjzhu@nju.edu.cn)4465-9408

Notes

The authors decl[are no competing](http://orcid.org/0000-0003-4465-9408) financial interest.

■ ACKNOWLEDGMENTS

We gratefully acknowledge the National Natural Science Foundation of China (21172106, 21174061, 21474048, 21372114, and 21672099).

■ REFERENCES

(1) Toyota, M.; Ihara, M. Nat. Prod. Rep. 1998, 15, 327.

(2) (a) Bass, P. D.; Gubler, D. A.; Judd, T. C.; Williams, R. M. Chem. Rev. 2013, 113, 6816. (b) Tanaka, M.; Ubukata, M.; Matsuo, T.; Yasue, K.; Matsumoto, K.; Kajimoto, Y.; Ogo, T.; Inaba, T. Org. Lett. 2007, 9, 3331.

(3) (a) Monakhova, N.; Ryabova, S.; Makarov, V. J. Heterocyclic Chem. 2016, 53, 685. (b) Saleh, N.; Voituriez, A. J. Org. Chem. 2016, 81, 4371. (c) During our manuscript preparation, a similar work was reported by Tang, G. and Zhao, Y. F.; see: Chen, S.; Zhang, P. B.; Shu, W. Y.; Gao, Y. Z.; Tang, G.; Zhao, Y. F. Org. Lett. 2016, 18, 5712.

(4) (a) Kirumakki, S.; Huang, J.; Subbiah, A.; Yao, J.; Rowland, A.; Smith, B.; Mukherjee, A.; Samarajeewa, S.; Clearfield, A. J. Mater. Chem. 2009, 19, 2593. (b) Spampinato, V.; Tuccitto, N.; Quici, S.; Calabrese, V.; Marletta, G.; Torrisi, A.; Licciardello, A. Langmuir 2010, 26, 8400.

(5) For selected reviews: (a) Van der Jeught, J. S.; Stevens, C. V. Chem. Rev. 2009, 109, 2672. (b) Demmer, C. S.; Krogsgaard-Larsen, L. N.; Bunch, L. Chem. Rev. 2011, 111, 7981. (c) Queffélec, C.; Petit, M.; Janvier, P.; Knight, D. A.; Bujoli, B. Chem. Rev. 2012, 112, 3777.

(6) (a) Sivendran, S.; Jones, V.; Sun, D.; Wang, Y.; Grzegorzewicz, A. E.; Scherman, M. S.; Napper, A. D.; Mc Cammon, J. A.; Lee, R. E.; Diamond, S. L.; Mc Neil, M. Bioorg. Med. Chem. 2010, 18, 896. (b) Dang, Q.; Liu, Y.; Cashion, D. K.; Kasib-hatla, S. R.; Jiang, T.; Taplin, F.; Jacintho, J. D.; Li, H.; Sun, Z.; Fan, Y.; DaRe, J.; Tian, F.; Li, W.; Gibson, T.; Lemus, R.; van Poelje, P. D.; Potter, S. C.; Erion, M.

D. J. Med. Chem. 2011, 54, 153. (c) Chen, X.; Kopecky, D. J.; Mihalic, J.; Jeffries, S.; Min, X.; Heath, J.; Deignan, J.; Lai, S.; Fu, Z.; Guimaraes, C.; Shen, S.; Li, S.; Johnstone, S.; Thibault, S.; Xu, H.; Cardozo, M.; Shen, W.; Walker, N.; Kayser, F.; Wang, Z. J. Med. Chem. 2012, 55, 3837.

(7) (a) Zheng, Q. Z.; Jiao, N. Chem. Soc. Rev. 2016, 45, 4590. (b) Yorimitsu, H. Beilstein J. Org. Chem. 2013, 9, 1269. (c) Wille, U. Chem. Rev. 2013, 113, 813.

(8) (a) Zhang, Y.; Hu, G. B.; Ma, D. M.; Xu, P. X.; Gao, Y. X.; Zhao, Y. F. Chem. Commun. 2016, 52, 2815. (b) Zhang, P. B.; Zhang, L. L.; Gao, Y. Z.; Tang, G.; Zhao, Y. F. RSC Adv. 2016, 6, 60922.

(9) For selected examples: (a) Li, Y. M.; Sun, M.; Wang, H. L.; Tian, Q. P.; Yang, S.-D. Angew. Chem., Int. Ed. 2013, 52, 3972. (b) Zhang, B.; Daniliuc, C. G.; Studer, A. Org. Lett. 2014, 16, 250. (c) Fuentes, N.; Kong, W. Q.; Fernández-Sánchez, L. F.; Merino, E.; Nevado, C. J. Am. Chem. Soc. 2015, 137, 964. (d) Kong, W. Q.; Merino, E.; Nevado, C. Angew. Chem., Int. Ed. 2014, 53, 5078. (e) Li, Z.; Fan, F.; Zhang, Z.; Xiao, Y.; Liu, D.; Liu, Z.-Q. RSC Adv. 2015, 5, 27853.

(10) Zhang, H. L.; Gu, Z. X.; Li, Z. Y.; Pan, C. D.; Li, W. P.; Hu, H. W.; Zhu, C. J. J. Org. Chem. 2016, 81, 2122.

(11) For selected recent examples: (a) Mi, X.; Wang, C.; Huang, M.; Zhang, J.; Wu, Y.; Wu, Y. Org. Lett. 2014, 16, 3356. (b) Zhou, Z.-Z.; Jin, D.-P.; Li, L.-H.; He, Y.-T.; Zhou, P.-X.; Yan, X.-B.; Liu, X.-Y.; Liang, Y.-M. Org. Lett. 2014, 16, 5616. (c) Hua, H. L.; Zhang, B. S.; He, Y. T.; Qiu, Y. F.; Wu, X. X.; Xu, P. F.; Liang, Y.-M. Org. Lett. 2016, 18, 216.

(12) Li, Y. W.; Qiu, G. Y. S.; Ding, Q. P.; Wu, J. Tetrahedron 2014, 70, 4652.

(13) Ke, J.; Tang, Y. L.; Yi, H.; Li, Y. L.; Cheng, Y. D.; Liu, C.; Lei, A. W. Angew. Chem., Int. Ed. 2015, 54, 6604.

(14) (a) Xu, P.; Wu, Z. K.; Zhou, N. N.; Zhu, C. J. Org. Lett. 2016, 18, 1143. (b) Wang, L.-J.; Wang, A.-Q.; Xia, Y.; Wu, X.-X.; Liu, X.-Y.; Liang, Y.-M. Chem. Commun. 2014, 50, 13998. (c) Li, D.-P.; Pan, X.- Q.; An, L.-T.; Zou, J.-P.; Zhang, W. J. Org. Chem. 2014, 79, 1850.

(15) (a) Ritter, C.; Nett, N.; Acevedo-Rocha, C. G.; Lonsdale, r.; Kraling, K.; Dempwolff, F.; Hoebenreich, S.; Graumann, P. L.; Reetz, M. T.; Meggers, E. Angew. Chem., Int. Ed. 2015, 54, 13440. (b) Ladziata, U.; Koposov, A. Y.; Lo, K. Y.; Willging, J.; Nemykin, V. N.; Zhdankin, V. V. Angew. Chem., Int. Ed. 2005, 44, 7127.